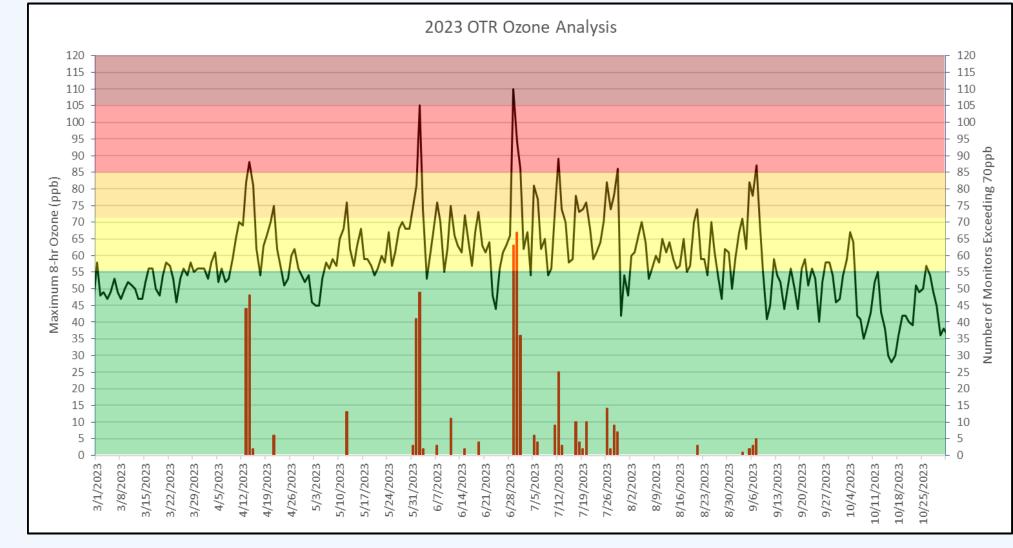
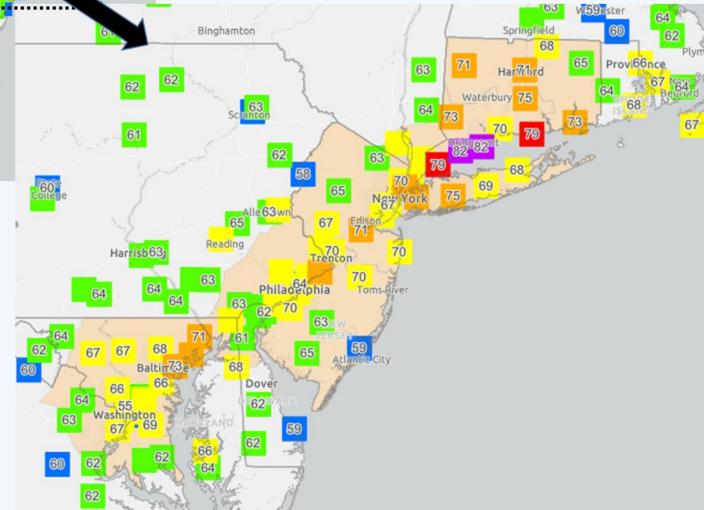
OTC Modeling Committee Update Spring 2024 OTC/MANEVU Stakeholders Meeting April 22, 2024

OTC Modeling Committee

Chairs, Kevin Civerolo and Margaret LaFarr, NYS DEC Committee Lead, Alexandra Karambelas, OTC/NESCAUM


OZONE TRANSPORT COMMISSION

Accomplishments


- Tracked 2023 OTR O₃ levels and preliminary attainment status
- Completed 2016 & 2023 simulations with CMAQ and CAMx V1 platform (Emissions Collaborative), with ERTAC v16.1
- Completed 2016/2023/2026 simulations with CMAQ and CAMx EPA V2 platform with V3 updates to CMV & solvents ("V2/V3"), with ERTAC v16.2
- Both 2016V1 and V2/V3 Technical Support Documents are available on the OTC website
- 2023 (V1 & V2/V3) and 2026 (V2/V3) DVFs are available

March-October 2023 OTR Summary

- 513 exceedances over 34 days
- 150 sites had at least one exceedance (all states except ME)
- Highest MDA8 of 110 ppb at Essex, MD on June 29 (one of 63 monitors to exceed on that day)
- 8 states + DC had one or more Unhealthy AQI days for O₃
- 19 sites with
 PRELIMINARY 21-23
 DV that exceeds the
 2015 NAAQS

"2023 Ambient Ozone Concentrations - Relative to the 2008 and 2015 8-Hr Ozone NAAQS" –

USA States

USA States

O3 NAAQS

< 61 61-65 66-70 71-75

Design Values Relative to 2015 O3
 NAAQS
 2015 O3 NAAQS
 Nonattainment Areas

Design Values - Relative to 2015

STATES

https://experience.arcgis.com/experience/502feb600b32460caee6bbd10f8f4559/page /2015-O3-NAAQS---Prelim-DV//

Data through December 2023 (Credit: Mark Prettyman and DE DNREC. Data available at https://experience.arcgis.com/experience/502feb600b32460caee6bbd1 0f8f4559/page/2015-O3-NAAQS---Prelim-DV/)

Model-Projected 2023 V2/V3 Design Values

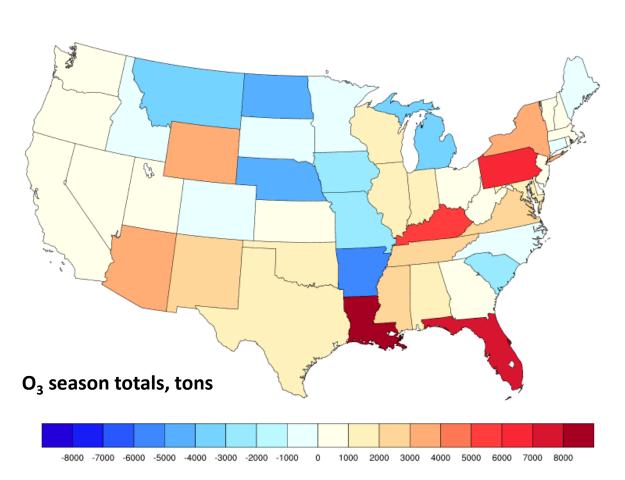
Site/City Name	2020-22	2021-23 (prelim)*	OTC 2023 V2/V3 CMAQ	OTC 2023 V2/V3 CAMx	EPA 2023 V3 CAMx
Greenwich, CT	77	79	74.6	73.4	71.6
Danbury, CT	71	73	69.3	69.5	67.3
Stratford, CT	81	82	74.7	75.1	72.9
Westport, CT	80	82	76	75.6	73.3
East Hartford, CT	68	71	62.4	63.7	61.5
Cornwall (Mohawk Mt), CT	67	71	63.2	63.2	61.2
Middletown, CT	73	75	69.6	70.5	68.7
Madison, CT	79	79	71.1	72.7	70.5
Groton (Fort Griswold), CT	72	73	71	67.8	65.5
McMillan, DC	67	71	61.4	62.8	59.8
Essex, MD	68	73	63	63.8	61
Edgewood, MD	68	71	63.9	64.8	61.8
Aldino, MD	67	71	62.6	63.6	61.2
East Brunswick (Rutgers), NJ	68	71	66.9	66.7	63.8
NYC (CCNY), NY	70	71	65.8	65.1	63.7
NYC (Queens College), NY	70	72	66.4	68	66.3
East Farmingdale (Babylon), NY	74	75	67.7	68.5	66.2
Bristol, PA	72	73	70.2	71.6	67.9

Note: All 2023 design values computed with EPA's 3x3 "no water" method

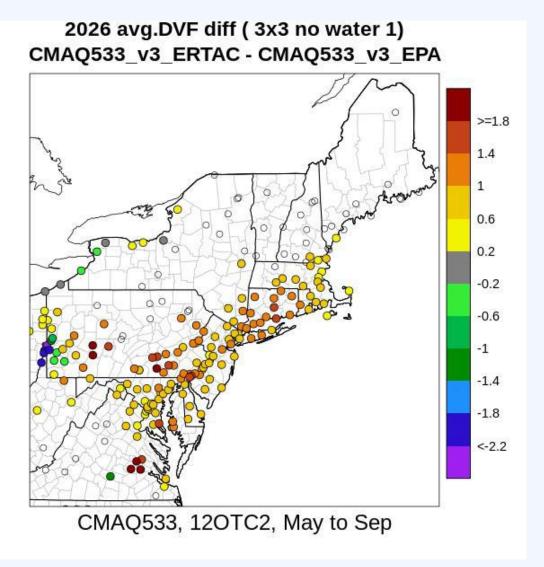
*Some 21-23 preliminary DVs may be elevated due to the impacts of smoke from wildfires in Canada and the Midwest

Model-Projected 2026 V2/V3 Design Values

Site/City Name	2020-22	2021-23 (prelim)*	OTC 2026 V2/V3 CMAQ	OTC 2026 V2/V3 CAMx	EPA 2026 V3 CAMx
Greenwich, CT	77	79	73	72.2	69.5
Danbury, CT	71	73	67.9	68.1	64.9
Stratford, CT	81	82	73.2	73.8	70.4
Westport, CT	80	82	74.6	74.2	70.8
East Hartford, CT	68	71	60.9	62.3	59
Cornwall (Mohawk Mt), CT	67	71	61.9	61.9	58.9
Middletown, CT	73	75	68	69	66.1
Madison, CT	79	79	69.5	71.3	68.2
Groton (Fort Griswold), CT	72	73	70.9	66.5	63.3
McMillan, DC	67	71	59.6	61.1	57.2
Essex, MD	68	73	61.5	62.3	58.3
Edgewood, MD	68	71	62.3	63.4	59.1
Aldino, MD	67	71	61	62.1	58.6
East Brunswick (Rutgers), NJ	68	71	65.5	65.3	61.3
NYC (CCNY), NY	70	71	64.6	64.2	61.8
NYC (Queens College), NY	70	72	65.1	67.2	64.5
East Farmingdale (Babylon), NY	74	75	66.4	67.4	64.2
Bristol, PA	72	73	68.7	70.3	65.2


Note: All 2026 design values computed with EPA's 3x3 "no water" method

*Some 21-23 preliminary DVs may be elevated due to the impacts of smoke from wildfires in Canada and the Midwest


Ongoing Initiatives

- Work with EPA, states, MJOs on next regional modeling platform 2022 base year, with analytic years 2026, 2032, 2038
 - 2022v1 out for state/MJO review in April
 - 2022v1 released June/July, analytic years later this year
 - 2022v2 released in 2025
- Comparisons of two EGU power production tools ERTAC and IPM
- Collaborate with SAS to design episodic modeling scenarios
 - Whole home electrification modeling complete, analyzing model results
 - ICI wood boilers work in progress

ERTAC vs IPM Projections

2026 EGU NOx Emissions Differences ERTAC minus EPA/IPM

Whole-Home Electrification - Methods

- Following NESCAUM study using NREL ResStock tool.
- Whole Home Electrification

 electrifies space heating and cooling,
 water heating, and appliances, and
 eliminates fossil fuel consumption
 and emissions for these needs.
- Modeled results in CMAQ for summer (June and July) and winter (January and February) using 2026 projections.

Net Scenario Emissions Reductions

	Whole Home Conversion				
	NO _x	CO ₂			
СТ	5,980	7,116,621			
DC	632	871,786			
DE	1,188	1,590,591			
MA	11,350	12,563,587			
MD	6,594	9,469,193			
ME	3,101	2,916,986			
NH	2,826	2,839,188			
NJ	12,467	14,998,520			
NY	29,406	33,802,947			
PA	18,598	22,772,929			
RI	1,824	1,974,895			
VA	7,651	11,644,181			
VT	1,470	1,188,347			
Sum	103,087	123,749,771			

Whole-Home Electrification – Results

- Changed electricity demand was applied per state and based on current fuel mix
- Electricity demand decreased 4-10% in summer (increased cooling efficiency), mostly increased in winter (higher space heating demand)
 - The exception is the southern OTR, where more efficient heat pumps would replace resistance heating
- Water heating spread evenly throughout the year
- Air quality modeling findings:
 - MDA8 O₃ decreased by about 0.5 ppb on high (>60 ppb) O₃ days, with isolated O₃ increases near NYC due to reduced NOx titration
 - Wintertime $PM_{2.5}$ decreased as much as 1 µg/m³ regionally, and >1 µg/m³ in NYC reduced NO₃ accounts for a substantial portion of the $PM_{2.5}$ decrease

Summary

- Regional modeling with the 2016 emissions platform has been completed, new 2022 platform is coming this year
- Modeled O_3 design values are available for 2023 and 2026 analytic years using CMAQ and CAMx, with ERTAC EGU
- Non-attainment is still an issue in the OTR, and crosscommittee efforts to develop emission sensitivity tests are ongoing

Thank you!

Model Committee Chairs

 Kevin Civerolo and Margaret LaFarr, NYSDEC (<u>kevin.civerolo@dec.ny.gov</u> and <u>margaret.lafarr@dec.ny.gov</u>)

OTC Committee Lead

 Alexandra Karambelas, OTC/NESCAUM (<u>akarambelas@nescaum.org</u>)

Emissions Inventory Lead

• Susan McCusker, MARAMA (<u>smccusker@marama.org</u>)

O₃ Season Updates

• Marcus Chase, NHDES (<u>marcus.a.chase@des.nh.gov</u>)